Numerical and Algebraic Studies for the Control of Quantum Systems: Controllability and Optimal Control in Finite-dimensional Quantum Systems - Uwe Sander - Books - Suedwestdeutscher Verlag fuer Hochschuls - 9783838124841 - March 11, 2011
In case cover and title do not match, the title is correct

Numerical and Algebraic Studies for the Control of Quantum Systems: Controllability and Optimal Control in Finite-dimensional Quantum Systems

Uwe Sander

Price
$ 66.49
excl. VAT

Ordered from remote warehouse

Expected delivery Oct 16 - 28
Add to your iMusic wish list

Numerical and Algebraic Studies for the Control of Quantum Systems: Controllability and Optimal Control in Finite-dimensional Quantum Systems

In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities.

Media Books     Paperback Book   (Book with soft cover and glued back)
Released March 11, 2011
ISBN13 9783838124841
Publishers Suedwestdeutscher Verlag fuer Hochschuls
Pages 148
Dimensions 226 × 8 × 150 mm   ·   238 g
Language German