
Tell your friends about this item:
Æ·±åº¦ä¿¡ç”¨é£Žé™© (Deep Credit Risk) - Ľ¿ç”¨python进行机器å¦ä¹
Harald Scheule
Æ·±åº¦ä¿¡ç”¨é£Žé™© (Deep Credit Risk) - Ľ¿ç”¨python进行机器å¦ä¹
Harald Scheule
- 了解æµåŠ¨æ€§ï¼Œæˆ¿å±‹å‡€å€¼å’Œè®¸å¤šå…¶ä»–å…³é”®é“¶è¡Œä¸šç‰¹å¾å˜é‡çš„作用;
- 选择并处ç†å˜é‡ï¼›
- 预测è¿çº¦ã€å¿ä»˜ã€æŸå¤±çŽ‡å’Œé£Žé™©æ•žå£ï¼›
- åˆ©ç”¨å±æœºå‰ç‰¹å¾é¢„æµ‹ç»æµŽè¡°é€€å’Œå±æœºåŽæžœï¼›
- ç†è§£COVID-19对信用风险带æ¥çš„å½±å“ï¼›
- å°†åˆ›æ–°çš„æŠ½æ ·æŠ€æœ¯åº”ç”¨äºŽæ¨¡åž‹è®ç»ƒå’ŒéªŒè¯ï¼›
- 从Logitåˆ†ç±»å™¨åˆ°éšæœºæ£®æž—和神ç»ç½‘络的深入å¦ä¹ ;
- è¿›è¡Œæ— ç›‘ç£èšç±»ã€ä¸»æˆåˆ†å’Œè´å¶æ–¯æŠ€æœ¯çš„应用;
- 为CECLã€IFRS 9å’ŒCCAR建立多周期模型;
- 建立用于在险价值和期望æŸå¤±çš„信贷组åˆç›¸å…³æ¨¡åž‹ï¼›
- 使用更多真实的信用风险数æ®å¹¶è¿è¡Œè¶…过1500行的代ç ...
- Understand the role of liquidity, equity and many other key banking features
- Engineer and select features
- Predict defaults, payoffs, loss rates and exposures
- Predict downturn and crisis outcomes using pre-crisis features
- Understand the implications of COVID-19
- Apply innovative sampling techniques for model training and validation
- Deep-learn from Logit Classifiers to Random Forests and Neural Networks
- Do unsupervised Clustering, Principal Components and Bayesian Techniques
- Build multi-period models for CECL, IFRS 9 and CCAR
- Build credit portfolio correlation models for VaR and Expected Shortfal
- Run over 1,500 lines of pandas, statsmodels and scikit-learn Python code
- Access real credit data and much more ...
Media | Books Paperback Book (Book with soft cover and glued back) |
Released | July 23, 2021 |
ISBN13 | 9780645245202 |
Publishers | Deep Credit Risk |
Pages | 456 |
Dimensions | 191 × 235 × 23 mm · 775 g |
Language | Chinese |
See all of Harald Scheule ( e.g. Paperback Book )