Æ·±åº¦ä¿¡ç”¨é£Žé™© (Deep Credit Risk) - Ľ¿ç”¨python进行机器学习 - Harald Scheule - Books - Deep Credit Risk - 9780645245202 - July 23, 2021
In case cover and title do not match, the title is correct

Æ·±åº¦ä¿¡ç”¨é£Žé™© (Deep Credit Risk) - Ľ¿ç”¨python进行机器学习

Harald Scheule

Price
$ 83.99
excl. VAT

Ordered from remote warehouse

Expected delivery Nov 14 - 27
Christmas presents can be returned until 31 January
Add to your iMusic wish list

Æ·±åº¦ä¿¡ç”¨é£Žé™© (Deep Credit Risk) - Ľ¿ç”¨python进行机器学习

- 了解æµåŠ¨æ€§ï¼Œæˆ¿å±‹å‡€å€¼å’Œè®¸å¤šå…¶ä»–å…³é”®é“¶è¡Œä¸šç‰¹å¾å˜é‡çš„作用;

- 选择并处ç†å˜é‡ï¼›

- 预测è¿çº¦ã€å¿ä»˜ã€æŸå¤±çŽ‡å’Œé£Žé™©æ•žå£ï¼›

- åˆ©ç”¨å±æœºå‰ç‰¹å¾é¢„æµ‹ç»æµŽè¡°é€€å’Œå±æœºåŽæžœï¼›

- ç†è§£COVID-19对信用风险带æ¥çš„å½±å“ï¼›

- 将创新的抽样技术应用于模型训练和验è¯ï¼›

- 从Logitåˆ†ç±»å™¨åˆ°éšæœºæ£®æž—和神ç»ç½‘络的深入学习;

- 进行无监ç£èšç±»ã€ä¸»æˆåˆ†å’Œè´å¶æ–¯æŠ€æœ¯çš„应用;

- 为CECLã€IFRS 9å’ŒCCAR建立多周期模型;

- 建立用于在险价值和期望æŸå¤±çš„信贷组åˆç›¸å…³æ¨¡åž‹ï¼›

- 使用更多真实的信用风险数æ®å¹¶è¿è¡Œè¶…过1500行的代ç ...




- Understand the role of liquidity, equity and many other key banking features

- Engineer and select features

- Predict defaults, payoffs, loss rates and exposures

- Predict downturn and crisis outcomes using pre-crisis features

- Understand the implications of COVID-19

- Apply innovative sampling techniques for model training and validation

- Deep-learn from Logit Classifiers to Random Forests and Neural Networks

- Do unsupervised Clustering, Principal Components and Bayesian Techniques

- Build multi-period models for CECL, IFRS 9 and CCAR

- Build credit portfolio correlation models for VaR and Expected Shortfal

- Run over 1,500 lines of pandas, statsmodels and scikit-learn Python code

- Access real credit data and much more ...

Media Books     Paperback Book   (Book with soft cover and glued back)
Released July 23, 2021
ISBN13 9780645245202
Publishers Deep Credit Risk
Pages 456
Dimensions 191 × 235 × 23 mm   ·   775 g
Language Chinese