Arithmetic Geometry - Gary Cornell - Books - Springer - 9780387963112 - August 20, 1986
In case cover and title do not match, the title is correct

Arithmetic Geometry

Gary Cornell

Price
€ 127.99
excl. VAT

Ordered from remote warehouse

Expected delivery Oct 13 - 23
Add to your iMusic wish list

Arithmetic Geometry

Description for Sales People: This book is the result of a conference on arithmetic geometry, held July 30 through August 10, 1984 at the University of Connecticut at Storrs, the purpose of which was to provide a coherent overview of the subject. This subject has enjoyed a resurgence in popularity due in part to Faltings' proof of Mordell's conjecture. Included are extended versions of almost all of the instructional lectures and, in addition, a translation into English of Faltings' ground-breaking paper. ARITHMETIC GEOMETRY should be of great use to students wishing to enter this field, as well as those already working in it. Table of Contents: I Some Historical Notes.- 1. The Theorems of Mordell and Mordell-Weil.- 2. Siegel s Theorem About Integral Points.- 3. The Proof of the Mordell Conjecture for Function Fields, by Manin and Grauert.- 4. The New Ideas of Parshin and Arakelov, Relating the Conjectures of Mordell and Shafarevich.- 5. The Work of Szpiro, Extending This to Positive Characteristic.- 6. The Theorem of Tate About Endomorphisms of Abelian Varieties over Finite Fields.- 7. The Work of Zarhin.- Bibliographic Remarks.- II Finiteness Theorems for Abelian Varieties over Number Fields.- 1. Introduction.- 2. Semiabelian Varieties.- 3. Heights.- 4. Isogenies.- 5. Endomorphisms.- 6. Finiteness Theorems.- References.- Erratum.- III Group Schemes, Formal Groups, and p-Divisible Groups.- 1. Introduction.- 2. Group Schemes, Generalities.- 3. Finite Group Schemes.- 4. Commutative Finite Group Schemes.- 5. Formal Groups.- 6. p-Divisible Groups.- 7. Applications of Groups of Type (p, p, p) to p-Divisible Groups.- References.- IV Abelian Varieties over ?.- 0. Introduction.- 1. Complex Tori.- 2. Isogenies of Complex Tori.- 3. Abelian Varieties.- 4. The Neron-Severi Group and the Picard Group.- 5. Polarizations and Polarized Abelian Manifolds.- 6. The Space of Principally Polarized Abelian Manifolds.- References.- V Abelian Varieties.- 1. Definitions.- 2. Rigidity.- 3. Rational Maps into Abelian Varieties.- 4. Review of the Cohomology of Schemes.- 5. The Seesaw Principle.- 6. The Theorems of the Cube and the Square.- 7. Abelian Varieties Are Projective.- 8. Isogenies.- 9. The Dual Abelian Variety: Definition.- 10. The Dual Abelian Variety: Construction.- 11. The Dual Exact Sequence.- 12. Endomorphisms.- 13. Polarizations and the Cohomology of Invertible Sheaves.- 14. A Finiteness Theorem.- 15. The Etale Cohomology of an Abelian Variety.- 16. Pairings.- 17. The Rosati Involution.- 18. Two More Finiteness Theorems.- 19. The Zeta Function of an Abelian Variety.- 20. Abelian Schemes.- References.- VI The Theory of Height Functions.- The Classical Theory of Heights.- 1. Absolute Values.- 2. Height on Projective Space.- 3. Heights on Projective Varieties.- 4. Heights on Abelian Varieties.- 5. The Mordell-Weil Theorem.- Heights and Metrized Line Bundles.- 6. Metrized Line Bundles on Spec (R).- 7. Metrized Line Bundles on Varieties.- 8. Distance Functions and Logarithmic Singularities.- References.- VII Jacobian Varieties.- 1. Definitions.- 2. The Canonical Maps from C to its Jacobian Variety.- 3. The Symmetric Powers of a Curve.- 4. The Construction of the Jacobian Variety.- 5. The Canonical Maps from the Symmetric Powers of C to its Jacobian Variety.- 6. The Jacobian Variety as Albanese Variety; Autoduality.- 7. Weil s Construction of the Jacobian Variety.- 8. Generalizations.- 9. Obtaining Coverings of a Curve from its Jacobian; Application to Mordell s Conjecture.- 10. Abelian Varieties Are Quotients of Jacobian Varieties.- 11. The Zeta Function of a Curve.- 12. Torelli s Theorem: Statement and Applications.- 13. Torelli s Theorem: The Proof.- Bibliographic Notes for Abelian Varieties and Jacobian Varieties.- References.- VIII Neron Models.- 1. Properties of the Neron Model, and Examples.- 2. Weil s Construction: Proof.- 3. Existence of the Neron Model: R Strictly Local.- 4. Projective Embedding.- 5. Appendix: Prime Divisors.- References.- IX Siegel Moduli Schemes and Their Compactifications over ?.- 0. Notations and Conventions.- 1. The Moduli Functors and Their Coarse Moduli Schemes.- 2. Transcendental Uniformization of the Moduli Spaces.- 3. The Satake Compactification.- 4. Toroidal Compactification.- 5. Modular Heights.- References.- X Heights and Elliptic Curves.- 1. The Height of an Elliptic Curve.- 2. An Estimate for the Height.- 3. Weil Curves.- 4. A Relation with the Canonical Height.- References.- XI Lipman s Proof of Resolution of Singularities for Surfaces.- 1. Introduction.- 2. Proper Intersection Numbers and the Vanishing Theorem.- 3. Step 1: Reduction to Rational Singularities.- 4. Basic Properties of Rational Singularities.- 5. Step 2: Blowing Up the Dualizing Sheaf.- 6. Step 3: Resolution of Rational Double Points.- References.- XII An Introduction to Arakelov Intersection Theory.- 1. Definition of the Arakelov Intersection Pairing.- 2. Metrized Line Bundles.- 3. Volume Forms.- 4. The Riemann-Roch Theorem and the Adjunction Formula.- 5. The Hodge Index Theorem.- References.- XIII Minimal Models for Curves over Dedekind Rings.- 1. Statement of the Minimal Models Theorem.- 2. Factorization Theorem.- 3. Statement of the Castelnuovo Criterion.- 4. Intersection Theory and Proper and Total Transforms.- 5. Exceptional Curves.- 5A. Intersection Properties.- 5B. Prime Divisors Satisfying the Castelnuovo Criterion.- 6. Proof of the Castelnuovo Criterion.- 7. Proof of the Minimal Models Theorem.- References.- XIV Local Heights on Curves.- 1. Definitions and Notations.- 2. Neron s Local Height Pairing.- 3. Construction of the Local Height Pairing.- 4. The Canonical Height.- 5. Local Heights for Divisors with Common Support.- 6. Local Heights for Divisors of Arbitrary Degree.- 7. Local Heights on Curves of Genus Zero.- 8. Local Heights on Elliptic Curves.- 9. Green s Functions on the Upper Half-plane.- 10. Local Heights on Mumford Curves.- References.- XV A Higher Dimensional Mordell Conjecture.- 1. A Brief Introduction to Nevanlinna Theory.- 2. Correspondence with Number Theory.- 3. Higher Dimensional Nevanlinna Theory.- 4. Consequences of the Conjecture.- 5. Comparison with Faltings Proof.- References. Marc Notes: Papers presented at an instructional conference on arithmetic geometry held July 30-Aug. 10, 1984, at the University of Connecticut in Storrs.; Includes bibliographies. Publisher Marketing: This book is the result of a conference on arithmetic geometry, held July 30 through August 10, 1984 at the University of Connecticut at Storrs, the purpose of which was to provide an overview of the subject.

Contributor Bio:  Cornell, Gary McGraw-Hill authors represent the leading experts in their fields and are dedicated to improving the lives, careers, and interests of readers worldwide

Media Books     Hardcover Book   (Book with hard spine and cover)
Released August 20, 1986
ISBN13 9780387963112
Publishers Springer
Pages 353
Dimensions 155 × 231 × 25 mm   ·   635 g
Language English  

Show all

More by Gary Cornell