Solid State Gas Sensing - Elisabetta Comini - Books - Springer-Verlag New York Inc. - 9780387096643 - October 9, 2008
In case cover and title do not match, the title is correct

Solid State Gas Sensing 2009 edition

Elisabetta Comini

Price
$ 107.49
excl. VAT

Ordered from remote warehouse

Expected delivery Sep 1 - 11
Add to your iMusic wish list

Also available as:

Solid State Gas Sensing 2009 edition

Developments in this field are rapidly advancing due to the recent and continuing impact of nanotechnology, and this book addresses the demand for small, reliable, inexpensive and portable systems for monitoring environmental concerns, indoor air quality, food quality, and many other specific applications.


Marc Notes: Includes bibliographical references and index. Jacket Description/Back: Solid State Gas Sensors offers insight into the principles, applications, and new trends in gas sensor technology. Developments in this field are rapidly advancing due to the recent and continuing impact of nanotechnology, and this book addresses the demand for small, reliable, inexpensive and portable systems for monitoring environmental concerns, indoor air quality, food quality, and many other specific applications. Working principles, including electrical, permittivity, field effect, electrochemical, optical, thermometric and mass (both quartz and cantilever types), are discussed, making the book valuable and accessible to a variety of researchers and engineers in the field of material science. Review Quotes: From the reviews: This book offers insight into the principles, applications and new trends in gas sensor technology. Developments in this area are rapidly advancing, so the timing of this book s publication is perfect. It covers sensors based on many different approaches, making it useful to a wide variety of people. (Hsuing Hsu, Optics & Photonics News, February, 2010)"Table of Contents: 1. Micro-Fabrication of Gas Sensors / Jan Spannhake, Andreas Helwig, Olaf Schulz, Gerhard Muller -- 1.1. Introduction -- 1.2. Gas Sensors and MEMS Miniaturization Techniques -- 1.2.1. Silicon as a Sensor Material -- 1.2.2. Thermal Sensors and Actuators -- 1.2.3. Thermal Microstructures -- 1.3. Specific Sensor Examples -- 1.3.1. Heat Conductivity Sensors -- 1.3.2. Metal-Oxide-Based Gas Sensors -- 1.3.3. Field-Effect Gas Sensors -- 1.3.4. Thermal Infrared Emitters -- 1.4. Gas-Sensing Microsystems -- 1.4.1. Low False-Alarm-Rate Fire Detection -- 1.4.2. Air Quality Monitoring and Leak Detection -- 1.5. Industrialization Issues -- 1.5.1. Initiating a System-Level Innovation -- 1.5.2. Building Added-Value Lines -- 1.5.3. Mastering the MEMS Challenge -- 1.5.4. Cooperation Across Technical and Economic Interfaces -- 1.5.5. Creating Higher Added Value -- 1.6. Conclusions and Outlook -- References -- 2. Electrical-Based Gas Sensing / Elisabetta Comini, Guido Faglia, Giorgio Sberveglieri -- 2.1. Introduction -- 2.2. Metal Oxide Semiconductor Surfaces -- 2.2.1. Geometric Structures -- 2.2.2. Electronic Structures -- 2.3. Electrical Properties of Metal Oxide Semiconductor Surfaces -- 2.3.1. Semiconductor Statistics -- 2.3.2. Surface States -- 2.3.3. Surface Space Charge Region -- 2.3.4. Surface Dipoles -- 2.4. Conduction Models of Metal Oxides Semiconductor -- 2.4.1. Polycrystalline Materials with Large Grains -- 2.4.2. Polycrystalline Materials with Small Grains -- 2.4.3. Mono-crystalline Materials -- 2.5. Adsorption over Metal Oxide Semiconductor Surfaces -- 2.5.1. Physical and Chemical Adsorption -- 2.5.2. Surface Reactions Towards Electrical Properties -- 2.5.3. Catalysts and Promoters -- 2.6. Deposition Techniques -- 2.6.1. Three-Dimensional Nanostructures -- 2.6.2. Two-Dimensional Nanostructures -- 2.6.3. One-Dimensional Materials -- 2.7. Conductometric Sensor Fabrication -- 2.7.1. Substrate and Heater -- 2.7.2. Electrical Contacts -- 2.7.3. Heating Treatments -- 2.7.4. Dopings, Catalysts and Filters -- 2.8. Transduction Principles and Related Novel Devices -- 2.8.1. DC Resistance -- 2.8.2. AC Impedance -- 2.8.3. Response Photoactivation -- 2.9. Conclusions and Outlook -- References -- 3. Capacitive-Type Relative Humidity Sensor with Hydrophobic Polymer Films / Yoshihiko Sadaoka -- 3.1. Introduction -- 3.2. Fundamental Aspects -- 3.2.1. Sorption Isotherms of Polymers -- 3.2.2. Water Sorption Behavior of Polymers -- 3.2.3. Effects of the Sorbed Water on the Dielectric Properties -- 3.3. Characterization of Polymers -- 3.3.1. Sorption Isotherms -- 3.3.2. FT-IR Measurement -- 3.3.3. Solvatochromism -- 3.3.4. Capacitance Changes with Water Sorption -- 3.3.5. Cross-Linked Polymer -- 3.4. Humidity-Sensors-Based Hydrophobic Polymer Thin Films -- 3.4.1. Poly-Methylmethacrylate-Based Humidity Sensor -- 3.4.2. Characteristics of Cross-Linked PMMA-Based Sensor -- 3.4.3. Polysulfone-based Sensor -- 3.4.4. Acetylene-Terminated Polyimide-based Sensor -- 3.4.5. Cross-Lined Fluorinated Polyimide-Based Sensor -- 3.4.6. Improvements Using MEMS Technology -- References -- 4. FET Gas-Sensing Mechanism, Experimental and Theoretical Studies / Anita Lloyd Spetz, Magnus Skoglundh, Lars Ojamae -- 4.1. Introduction -- 4.2. Brief Summary of the Detection Mechanism of FET Devices -- 4.3. UHV Studies of FET Surface Reactions -- 4.4. TEM and SEM Studies of the Nanostructure of FET Sensing Layers -- 4.5. Mass Spectrometry for Atmospheric Pressure Studies -- 4.6. The Scanning Light Pulse Technology -- 4.7. DRIFT Spectroscopy for In Situ Studies of Adsorbates -- 4.8. Atomistic Modelling of Chemical Reactions on FET Sensor Surfaces -- 4.9. Nanoparticles as Sensing Layers in FET Devices -- 4.10. Summary and Outlook -- References -- 5. Solid-State Electrochemical Gas Sensing / Norio Miura, Perumal Elumalai, Vladimir V. Plashnitsa, Taro Ueda, Ryotaro Wama, Masahiro Utiyama -- 5.1. Introduction -- 5.2. Mixed-Potential-Type Sensors -- 5.2.1. High-Temperature-Type NOx Sensors -- 5.2.2. Improvement in NO[subscript 2] Sensitivity by Additives -- 5.2.3. Hydrocarbon (C[subscript 3]H[subscript 6] or CH[subscript 4]) Sensors -- 5.2.4. Use of Nanostructured NiO-Based Materials -- 5.2.5. Nanosized Au Thin-Layer for Sensing Electrode -- 5.3. Amperometric Sensors -- 5.4. Impedancemetric Sensors -- 5.4.1. Sensing of Various Gases in ppm Level -- 5.4.2. Environmental Monitoring of C[subscript 3]H[subscript 6] in ppb Level -- 5.5. Solid-State Reference Electrode -- 5.6. Conclusions and Future Prospective -- References -- 6. Optical Gas Sensing / Ilaria Cacciari, Giancarlo C. Righini -- 6.1. Introduction -- 6.2. Spectroscopic Detection Schemes -- 6.3. Ellipsometry -- 6.4. Surface Plasmon Resonance -- 6.5. Guided-Wave Configurations for Gas Sensing -- 6.5.1. Integrated Optical SPR Sensors -- 6.5.2. Fiber Optic SPR Sensors -- 6.5.3. Conventional and Microstructured Fibers for Gas Sensing -- 6.6. Conclusions -- References -- 7. Thermometric Gas Sensing / Istvan Barsony, Csaba Ducso, Peter Furjes -- 7.1. Detection of Combustible Gases -- 7.1.1. Combustion -- 7.1.2. Thermal Considerations during Combustion -- 7.1.3. Catalysis -- 7.1.4. Explosive Mixtures -- 7.2. Catalytic Sensing -- 7.2.1. Pellistors -- 7.2.2. Microcalorimeters in Enzymatic Reactions -- 7.3. Thermal Conductivity Sensors -- 7.4. Calorimetric Sensors Measuring Adsorption/Desorption Enthalpy -- 7.5. MEMS and Silicon Components -- 7.5.1. Thermal Considerations -- 7.5.2. Temperature Readout -- 7.5.3. Integrated Calorimetric Sensors -- 7.6. Sensor Arrays and Electronic Noses -- References -- 8. Acoustic Wave Gas and Vapor Sensors / Samuel J. Ippolito, Adrian Trinchi, David A. Powell, Wojtek Woldarski -- 8.1. Introduction -- 8.1.1. Acoustic Waves in Elastic Media -- 8.1.2. Advantages of Acoustic-Wave-Based Gas-Phase Sensors -- 8.2. Thickness Shear Mode (TSM)-Based Gas Sensors -- 8.2.1. Quartz Crystal Microbalance (QCM)-Based Gas Sensors -- 8.2.2. Thin-Film Resonator (TFR)-Based Gas Sensors -- 8.3. Surface Acoustic Wave (SAW)-Based Gas Sensors -- 8.3.1. Conventional SAW Gas Sensors -- 8.3.2. Multi-Layered SAW Gas Sensors -- 8.3.3. Gas and Vapor Sensitivity -- 8.3.4. SAW Device Gas Sensor Performance -- 8.4. Concluding Remarks -- References -- 9. Cantilever-Based Gas Sensing / Hans Peter Lang -- 9.1. Introduction to Microcantilever-Based Sensing -- 9.1.1. Early Approaches to Mechanical Sensing -- 9.1.2. Cantilever Sensors -- 9.1.3. Deflection Measurement -- 9.2. Modes of Operation -- 9.2.1. Static Mode -- 9.2.2. Dynamic Mode -- 9.3. Functionalization -- 9.4. Example of an Optical Beam-Deflection Setup -- 9.4.1. General Description -- 9.4.2. Cantilever-Based Electronic Nose Application -- 9.5. Applications of Cantilever-Based Gas Sensors -- 9.5.1. Gas Sensing -- 9.5.2. Chemical Vapor Detection -- 9.5.3. Explosives Detection -- 9.5.4. Gas Pressure and Flow Sensing -- 9.6. Other Techniques -- 9.6.1. Metal Oxide Gas Sensors -- 9.6.2. Quartz Crystal Microbalance -- 9.6.3. Conducting Polymer Sensors -- 9.6.4. Surface Acoustic Waves -- 9.6.5. Field Effect Transistor Sensors Devices -- References -- Index. Publisher Marketing: This title covers all the topics of gas sensors, a research field with an increasing interest in the last few years due to the demands of reliable, cheap and portable systems for environmental monitoring, indoor air quality, food quality control and many other applications.

Media Books     Hardcover Book   (Book with hard spine and cover)
Released October 9, 2008
ISBN13 9780387096643
Publishers Springer-Verlag New York Inc.
Pages 280
Dimensions 155 × 235 × 20 mm   ·   612 g
Language English  
Editor Comini, Elisabetta
Editor Faglia, Guido
Editor Sberveglieri, Giorgio